Effective Region-based Relevance Feedback for Interactive Content-based Image Retrieval

نویسندگان

  • Walid Barhoumi
  • Abir Gallas
  • Ezzeddine Zagrouba
چکیده

This paper proposes an effective framework for interactive region-based image retrieval. By utilizing fuzzy coarse segmentation and the graph structure for representing each image, the retrieval process was performed by measuring the image similarity according to the graph similarity. To assess the similarity between two graphs, fuzzy inter relations among regions feature vectors and spatial dispositions as well as fuzzy regions weights are explored. A region-based relevance feedback scheme was also incorporated into the retrieval process, by updating the importance of query image regions based on the user feedbacks, leading to a further performance improvement. Experimental study proves that the proposed region-based relevance feedback mechanism tailors the system semantic behavior relatively to each user personal preferences through the accumulation of the useful semantic information from the feedback information.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Document Image Retrieval Based on Keyword Spotting Using Relevance Feedback

Keyword Spotting is a well-known method in document image retrieval. In this method, Search in document images is based on query word image. In this Paper, an approach for document image retrieval based on keyword spotting has been proposed. In proposed method, a framework using relevance feedback is presented. Relevance feedback, an interactive and efficient method is used in this paper to imp...

متن کامل

بازیابی تعاملی تصاویر طبیعت با بهره گیری از یادگیری چند نمونه ای

Content-based image retrieval (CBIR) has received considerable research interest in the recent years. The basic problem in CBIR is the semantic gap between the high-level image semantics and the low-level image features. Region-based image retrieval and learning from user interaction through relevance feedback are two main approaches to solving this problem. Recently, the research in integra...

متن کامل

Semiautomatic Image Retrieval Using the High Level Semantic Labels

Content-based image retrieval and text-based image retrieval are two fundamental approaches in the field of image retrieval. The challenges related to each of these approaches, guide the researchers to use combining approaches and semi-automatic retrieval using the user interaction in the retrieval cycle. Hence, in this paper, an image retrieval system is introduced that provided two kind of qu...

متن کامل

Probabilistic Region Relevance Learning for Content-Based Image Retrieval

Probabilistic feature relevance learning (PFRL) is an effective method for adaptively computing local feature relevance in content-based image retrieval. It computes flexible retrieval metrics for producing neighborhoods that are elongated along less relevant feature dimensions and constricted along most influential ones. Based on the observation that regions in an image have unequal importance...

متن کامل

Region-based relevance feedback in image retrieval

Relevance feedback and region-based representation of images are two effective ways to improve accuracy in content-based image retrieval. In this paper, we propose a novel relevance feedback approach based on region representation. It can be considered as a special case of the query point movement method in region-based image retrieval. By assembling all the segmented regions of positive exampl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009